Our Publications

PharmAI's technology is based on over 100 man years of academic research. Our scientists continuously improve our algorithm to better and faster optimize our drug discovery engine. Below is a selected list of publications that is the base of the PharmAIs algorithm.


 

PLIP 2021: expanding the scope of the protein–ligand interaction profiler to DNA and RNA Melissa F Adasme, Katja L Linnemann, Sarah Naomi Bolz, Florian Kaiser, Sebastian Salentin, V Joachim Haupt, Michael Schroeder Nucleic Acids Research, gkab294, https://doi.org/10.1093/nar/gkab294

https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkab294/6266421
 

 

In Silico Driven Prediction of MAPK14 Off-Targets Reveals Unrelated Proteins with High Accuracy Florian Kaiser, Maximilian G. Plach, Christoph Leberecht, Thomas Schubert, V. Joachim Haupt bioRxiv 2020.07.24.219071; doi: https://doi.org/10.1101/2020.07.24.219071.

https://www.biorxiv.org/content/10.1101/2020.07.24.219071v1
 

 

The structural basis of the genetic code: amino acid recognition by aminoacyl-tRNA synthetases. Kaiser et al (2020)

https://www.nature.com/articles/s41598-020-69100-0
 

 

Application of our Focused Library Service. Kaiser F, et al. (2020) Focus Your Screening Library: Rapid Identification of Novel PDE2 Inhibitors with in silico Driven Library Prioritization and MicroScale Thermophoresis. bioRxiv 2020.04.22.021360; doi: https://doi.org/10.1101/2020.04.22.021360

https://www.biorxiv.org/content/10.1101/2020.04.22.021360v1
 

 

Drug Repositioning from Infectious Disease (Malaria) to Cancer Chemoresistance. Salentin S, et al. (2017) From malaria to cancer: Computational drug repositioning of amodiaquine using PLIP interaction patterns. Sci Rep. 7:11401

https://www.nature.com/articles/s41598-017-11924-4
 

 

New Drug Candidates for Cancer Chemoresistance. Heinrich JC, et al. (2016) New HSP27 inhibitors efficiently suppress drug resistance development in cancer cells. Oncotarget. 7:68156

http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=view&path[]=11905&pubmed-linkout=1
 

 

New Drug Candidates for Tuberculosis. Štular T, et al. (2016) Discovery of M. tuberculosis InhA inhibitors by binding sites comparison and ligands prediction. J Med Chem. 59:11069-11078

https://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.6b01277
 

 

Drug Repositioning from Antiviral to Chagas Disease. Haupt VJ, et al. (2016) Computational Drug Repositioning by Target Hopping: A Use Case in Chagas Disease. Curr Pharm Des. 22:3124

http://www.eurekaselect.com/139787/article
 

 

Interaction Patterns for Characterization of Ligand Binding. Salentin S, et al. (2015) PLIP: fully automated protein-ligand interaction profiler. Nucl Acids Res. 43:443

https://academic.oup.com/nar/article/43/W1/W443/2467865?searchresult=1
 

 

Binding Site Similarity Largely Explains Drug Promiscuity. Haupt VJ, et al. (2013) Drug Promiscuity in PDB: Protein Binding Site Similarity Is Key. PLOS ONE 8:10.1371 (Top 10% most cited in PLOS ONE)

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0065894
 
Top